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Decoherence of a center spin or qubit in a spin bath is essentially determined by the many-body bath
evolution. The bath dynamics can start either from a pure state or, more generally, from a statistical ensemble.
In the preceding article �W. Yang and R. B. Liu, Phys. Rev. B 78, 085315 �2008��, we developed the
cluster-correlation expansion �CCE� theory for the so-called single-sample bath dynamics initiated from a
factorizable pure state. Here we present the ensemble CCE theory, which is based on similar ideas of the
single-sample CCE. The bath evolution is factorized into the product of all possible cluster correlations, each
of which accounts for the authentic �nonfactorizable� collective excitation of a group of bath spins and for the
finite-time evolution in the qubit decoherence problem. Convergent results can be obtained by truncating the
ensemble CCE by keeping cluster correlations up to a certain size. A difference between the ensemble CCE and
single-sample CCE is that the mean-field treatment in the latter formalism of the diagonal part of the spin-spin
interaction in the bath is not possible in the former case. The ensemble CCE can be applied to nonfactorizable
initial states. The ensemble CCE is checked against the exact solution of an XY spin bath model. For small spin
baths, it is shown that single-sample dynamics is sensitive to the sampling of the initial state from a thermal
ensemble and hence very different from the ensemble average.
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I. INTRODUCTION

The dissipative dynamics of a center spin in a spin bath1

is an old topic in spin-resonance spectroscopy.2–5 Recently,
this subject is revisited6–24 mostly due to the decoherence
issue in quantum information processing.25–27 Being a most
promising candidate for solid-state qubits, electron spins in
quantum dots or impurity centers experience decoherence by
coupling to complex solid-state environments. A series of
theoretical9–12 and experimental6–8 works have identified that
the dominating decoherence mechanism for electron-spin qu-
bits at low temperatures �such as below a few kelvins� is the
entanglement with nuclear spins of the host lattice.13–21

When the qubit flip is suppressed �usually by the large
Zeeman energy mismatch between qubit and bath spins in a
moderate magnetic field�, the Hamiltonian for a qubit-bath
system has the general form

Ĥ = � + �Ĥ�+��+ � + �− �Ĥ�−��− � . �1�

The bath dynamics is driven by different Hamiltonians Ĥ���

depending on the qubit states �� �. For a given initial bath
state �J� �which could be a random sampling from a thermal
ensemble�, the qubit coherence at time t is characterized by

the “single-sample” propagator �J�eiĤ�−�te−iĤ�+�t�J�. For a
thermal ensemble of bath states characterized by a density
matrix �̂, a further ensemble average should be processed
and the qubit coherence is given by the ensemble average

Tr��̂eiĤ�−�te−iĤ�+�t�. In general, the key is to evaluate the
ensemble-averaged propagator

L = Tr��̂eiÔ�1�
eiÔ�2�

¯� �2�

for a general density matrix �̂ and arbitrary bath interaction

operators �Ô�j�	. To address this problem, a variety of quan-

tum many-body theories have been developed, including the
density-matrix cluster expansion,13–17 the pair-correlation
approximation,18–20 and the linked-cluster expansion.22 The
pair-correlation approximation provides a clear physical pic-
ture for the bath dynamics by keeping only spin-pair corre-
lations. The linked-cluster expansion accurately takes into
account higher-order correlations with a Feynman diagram
method, which, however, becomes dramatically tedious with
increasing the order of diagrams. The density-matrix cluster
expansion simplifies the evaluation of higher-order correla-
tions, but it may not converge to the exact results for rela-
tively small baths.24

Very recently, we have developed a cluster-correlation ex-
pansion �CCE� theory24 for the evaluation of the single-
sample propagator LJ
�J�eiÔ�1�

eiÔ�2�
¯ �J�, which is a spe-

cial case of the ensemble-averaged propagator in Eq. �2�.
The CCE method provides a simple and accurate method to
systematically take into account the high-order correlations.
For a temperature T much higher than the bath interaction
strength ��10−9 K for nuclear spins in GaAs�, the initial
thermal ensemble can be well approximated as �̂�exp

�−Ĥ0 /kBT�, where Ĥ0 is the noninteracting Hamiltonian con-
taining only the Zeeman energy. Such an initial ensemble is
factorizable and a sampling �J� from the ensemble can be
taken as a product state �J�= �n�jn� of all constituent bath
spins, where �jn� denotes the Zeeman energy eigenstate of the
nth bath spin. For a large spin bath, previous study20 has
shown that the qubit decoherence is insensitive to the ran-
dom sampling of the initial bath state from a thermal en-
semble since the statistical fluctuation scales with the num-
ber of bath spins N as 1 /N. Thus the ensemble dynamics
can be just identified with the single-sample dynamics with a
random choice of the initial state.20 For a relatively small
bath, however, the single-sample dynamics could be sensi-
tive to the sampling of the initial state and the ensemble
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average can be very different from any single sample. More
importantly, if the initial state of the bath is entangled, i.e.,

�̂ � �
�

P��
i

�̂�i	
���, �3�

for any choice of probability distribution �P�	 and single
spin-density matrices ��̂�i	

���	, the single-sample CCE is not
applicable. To extend to general ensemble bath dynamics,
one could simply use the Monte Carlo simulation with a
sufficiently large random sampling of the initial states from
the ensemble. The Monte Carlo simulation is practically
cumbersome due to the large number of initial states required
for a faithful reproduction of the ensemble dynamics and,
more importantly, it cannot be applied to nonfactorizable ini-
tial states. In this paper we will develop a CCE formalism
suitable for direct evaluation of ensemble-averaged bath evo-
lution.

In Sec. II, we will present the ensemble CCE and compare
it to the single-sample CCE. In Sec. III, we check the en-
semble CCE against the exact solution of a one-dimensional
XY mode and compare the single-sample CCE and ensemble
CCE. Sec. IV gives the conclusions.

II. ENSEMBLE CLUSTER-CORRELATION EXPANSION

A. Example

Let us consider a bath consisting of N spins and evaluate
the bath evolution

L 
 Tr��̂eiÔ� �4�

averaged over a noninteracting �factorizable� ensemble

�̂ = �̂�1	 � �̂�2	 � ¯ � �̂�N	, �5�

where �̂�i	=� jpj�j��j� is the noninteracting density matrix for

the ith spin Ĵi and

Ô 
 �
n

�nĴn
z + �

m�n

�m,n�Ĵm
+ Ĵn

− + Ĵm
− Ĵn

+� �6�

is the dimensionless bath interaction operator. Here �m,n is
the interaction strength between spins m and n. The coeffi-
cients ��m,n	 are treated as small quantities. In the absence of
interaction ���m,n	=0�, the propagator assumes a factorized
form

L���m,n	=0 = L�1	L�2	 ¯ L�N	,

where L�n	
 L̃�n	
Tr��̂�n	e
iÔ�n	� and Ô�n	
�nĴn

z . For ��m,n	
�0, we introduce additional factors �cluster correlations� to
account for the interaction corrections. These cluster correla-
tions can be introduced successively as follows.

�1� Two-spin correlations �L̃�i,j		. If the bath consists of
only two spins with indices �i , j	, the propagator would be

L�i,j	 
 Tr��̂�i,j	e
iÔ�i,j	� ,

with �̂�i,j	
 �̂�i	 � �̂�j	 and

Ô�i,j	 
 �iĴi
z + � jĴ j

z + �i,j�Ĵi
+Ĵj

− + Ĵi
−Ĵi

+� ,

i.e., L�i,j	 is obtained from Eq. �4� by dropping all spins ex-
cept i and j. Without interaction ��i,j =0�, the propagator is

L�i,j	��i,j=0 = L�i	L�j	 = L̃�i	L̃�j	.

The interaction correction makes the factorization to be

L�i,j	= L̃�i	L̃�j	L̃�i,j	. Thus the two-spin correlation is defined
as

L̃�i,j	 

L�i,j	

L̃�i	L̃�j	

. �7�

Obviously, the Taylor expansion of the pair correlation with
respect to the interaction strength is

ln L̃�i,j	 = c1�i,j + c2�ij
2 + ¯ = O��� , �8�

where � denotes the typical magnitude of the interaction

strength ��m,n	. Thus ln L̃�i,j	 is at most a first-order small
quantity.

�2� Three-spin correlations �L̃�i,j,k		. For a bath of three
spins �i , j ,k	, the propagator is

L�i,j,k	 
 Tr��̂�i,j,k	e
iÔ�i,j,k	� ,

with �̂�i,j,k	
 �̂�i	 � �̂�j	 � �̂�k	 and

Ô�i,j,k	 
 �
n=i,j,k

�nĴn
z + �

m,n=i,j,k

m�n

�m,n�Ĵm
+ Ĵn

− + Ĵm
− Ĵn

+� ,

i.e., L�i,j,k	 is obtained from Eq. �4� by dropping all spins
except i, j, and k. Similar to the two-spin case, L�i,j,k	 can be
factorized as

L�i,j,k	 = L̃�i	L̃�j	L̃�k	L̃�i,j	L̃�j,k	L̃�i,k	L̃�i,j,k	,

where

L̃�i,j,k	 

L�i,j,k	

L̃�i	L̃�j	L̃�k	L̃�i,j	L̃�j,k	L̃�i,k	

�9�

accounts for the nonfactorizable correlation among the three

spins. ln L̃�i,j,k	 would vanish if the interactions in Ô�i,j,k	 can-
not connect the three spins �i , j ,k	 into a linked cluster. For
example, if �i,j =�i,k=0 and � j,k�0, the three-spin propaga-
tor L�i,j,k	 would be factorized as

L�i,j,k	 = L�i	L�j,k	,

which, together with ln L̃�i,j	=ln L̃�i,k	=0 �according to Eq.

�8��, leads to ln L̃�i,j,k	=0 according to Eq. �9�. This connec-

tivity property of ln L̃�i,j,k	 leads to the Taylor expansion

ln L̃�i,j,k	 = c1�i,j�i,k + c2� j,i� j,k + c3�k,i�k,j + O��3� .

�10�

Thus ln L̃�i,j,k	 is at most a second-order small quantity.

�3� Cluster correlation �L̃C	. The above factorization pro-
cedure can be carried out for baths consisting of more and
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more spins. For a bath of an arbitrary group of spins �de-
noted as C�, the propagator becomes

LC 
 Tr��̂CeiÔC� ,

which is obtained from Eq. �4� by dropping all spins except
those belonging to the group C. By introducing the cluster
correlation

L̃C 

LC

�
C��C

L̃C�

,

the propagator is factorized as

LC = �
C��C

L̃C�.

By mathematical induction, it can be readily proved that

ln L̃C vanishes if the interactions contained in ÔC cannot con-
nect all the spins in group C into a linked cluster. Such con-
nectivity property ensures that in each term of the Taylor

expansion of ln L̃C about the interaction strength, the coeffi-
cient ��i,j	’s must appear at least ��C�−1� times ��C� being the

number of spins in the group�. Thus ln L̃C=O���C�−1�. In par-
ticular, the full propagator L of the whole bath is factorized
into the product of all possible cluster correlations as

L = ��
i

L̃�i	���
�i,j	

L̃�i,j	�¯ L̃�1,2,¯,N	 = �
C��1,2,¯,N	

L̃C.

�11�

An exact evaluation of the ensemble CCE in Eq. �11� is
not possible in general, which amounts to exactly solving the
many-spin dynamics. In the qubit decoherence problem, it
often suffices to truncate the CCE to an appropriate order M
�denoted as M-CCE for short� by dropping all cluster corre-
lations with sizes larger than M,

L�M� = �
�C��M

L̃C. �12�

For example, the first-order truncation of the ensemble CCE
�the 1-CCE� is

L�1� = L̃�1	L̃�2	 ¯ L̃�N	 = �
i

L̃�i	, �13�

which is equivalent to Eq. �4� with all interaction terms in Ô
dropped. In order to incorporate the interaction effects, the
lowest nontrivial order of truncation is the second order �2-
CCE�

L�2� = ��
i

L̃�i	���
�i,j	

L̃�i,j	� , �14�

which coincides with the pair-correlation approximation.18,20

Since only connected clusters for which ln L̃C�0 contrib-
ute to the propagator L, the convergence �and hence the jus-
tification for the truncation� of the ensemble CCE can be
estimated as follows. First, if each spin interacts, on average,
with q spins, then the number of connected size-M clusters is

�NqM−1, with N the total number of bath spins. Second, for

a size-M cluster, ln L̃C=O��M−1�. The contribution to ln L
from all the size-M clusters is ��C�=Mln L̃C�N�q��M−1. For
q��1, the ensemble CCE converges.

B. General theory

The above example can be readily generalized to

L = Tr��̂eiÔ�1�
eiÔ�2�

¯� , �15�

with a general ensemble �̂ and an arbitrary series of time-

ordered bath operators Ô�j� �j=1,2 ,¯�. The bath interac-
tions need not be purely off diagonal or contain only pair-
wise interactions and the initial density matrix need not be
factorizable. For a thermal ensemble as

�̂ = exp�− �TĤ� , �16�

the density matrix itself can be viewed as a propagator with
imaginary time 	=−i�T and the whole propagator can be
written as

L = Tr��̂0ei�i�TĤ�eiÔ�1�
eiÔ�2�

¯� , �17�

with �̂0 denoting the trivial thermal state at infinite tempera-
ture ��T=0�.

In essentially the same way as illustrated in the example

above, a hierarchy of cluster correlations �L̃C	 can be intro-
duced. First, the single-spin correlation is defined as

L̃�i	 
 L̃�i	,

where

L�i	 
 Tr��̂�i	e
iÔ�i	

�1�
eiÔ�i	

�2�
¯�

is obtained from Eq. �15� by dropping all spins except spin i
and

�̂�i	 
 Trk�i��̂� �18�

is the reduced density matrix of the ith spin. Then the cluster
correlation for an arbitrary group C of bath spins is defined as

L̃C 

LC

�
C��C

L̃C�

,

where

LC 
 Tr��̂CeiÔC
�1�

eiÔC
�2�
¯�

is obtained from Eq. �15� by dropping all bath spins outside
group C and

�̂C 
 Trk�C��̂� �19�

is the reduced density matrix of the cluster. In particular, the
whole bath propagator is factorized into all possible cluster
correlations as

L = �
C��1,2,¯,N	

L̃C, �20�

which assumes exactly the same form as Eq. �11�.
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Now we discuss the convergence property of the en-
semble CCE for general bath operators. To focus on the ef-
fect of the interaction strength, we consider the case that the
initial bath density matrix is factorizable as in Eq. �5�. For a

factorizable ensemble, it can be readily proved that ln L̃C
vanishes when the interactions contained in operators

ÔC
�1� , ÔC

�2� , . . . cannot connect all the spins in the group C into

a linked cluster. Considering that the operators Ô�j� contains

the W-spin interaction such as �i1i2i3
�j� Ĵi1

x Ĵi2
y Ĵi3

z for W=3 �in the
example of Sec. II A, W=2�, in the Taylor expansion of

ln L̃C with respect to the dimensionless coupling coefficient
�’s, the interaction coefficients ��i1,i2,¯,iW

�j� 	 contained in each
term must connect all the spins in group C into a linked
cluster. At least �M −1� / �W−1� interaction coefficients are
needed to form a size-M linked cluster. As a result,

ln L̃C = O���M−1�/�W−1�� , �21�

where � is the typical magnitude of the coupling coefficients.
The number of size-M clusters is �NqM−1. So the total con-
tribution to ln L from all size-M clusters is

�
�C�=M

ln L̃C � N�qW−1���M−1�/�W−1�.

Therefore, the ensemble CCE converges for qW−1��1. In-
terestingly, if the bath has certain initial correlations or en-
tanglement �such as a strongly correlated system at low tem-
perature�, the convergence property would be determined by
both the inverse temperature �T and the typical coupling
constant �.

C. Comparison to single-sample CCE

The evaluation of the single-sample average

LJ = �J�eiÔ�1�
eiÔ�2�

¯ �J� �22�

on a factorizable product state �J�= �n�jn� can be done as a
special case of the ensemble CCE by taking �̂= �J��J�
= �n�̂�n	, with �̂�n	
�jn��jn�. This method is slightly different
from the previously developed single-sample CCE �Ref. 24�
in defining the cluster correlation for a cluster C. Here not
only off-diagonal but also diagonal interaction terms involv-
ing spins outside cluster C have been dropped. In contrast,
the single-sample CCE in Ref. 24 keeps all the diagonal
terms by replacing the spins outside cluster C with their
mean-field values in the initial state �J�. For example, the

diagonal interaction �n�C
i,nĴi
zĴn

z between a spin Ĵi�C inside

cluster C and spins �Ĵn�C	 outside cluster C would be re-

placed with Ĵi
z�n�C
i,n�J�Ĵn

z �J�, which contributes a static
local mean field for the ith spin. With such a static mean-
field treatment of the diagonal terms, the expansion is carried
out with respect to the most essential dynamics of the spin
bath, namely, the collective flip-flop of a cluster of spins that
is responsible for the dynamical local-field fluctuation for the
qubit. This procedure, however, is not applicable to the en-
semble CCE for each sample state �J� from the ensemble �̂
will generate a different static mean field.

With the static local-field fluctuation singled out, the clus-
ter correlation in the single-sample CCE accounts for the
collective dynamical local-field fluctuation generated by off-
diagonal interactions. As a result, its magnitude in single-
sample CCE is determined by the magnitude of off-diagonal
interactions, while in ensemble CCE it is determined by the
magnitude of all kinds of bath interactions. As an example,
consider pairwise interaction such as

Ô 
 �
n

�nĴn
z + �

m�n

��m,n
nd �Ĵm

+ Ĵn
− + Ĵm

− Ĵn
+� + �m,n

d Ĵm
z Ĵn

z� .

Let �nd��d� be the typical magnitude of the off-diagonal �di-
agonal� coupling coefficients �m,n

nd ��m,n
d � and � be the greater

one of �d and �nd. Then for a size-M cluster, ln L̃C
=O��M−1� in the ensemble CCE, while ln L̃C

J=O��nd
M−1� in

the single-sample CCE. The single-sample CCE would con-
verge faster than the ensemble CCE. Moreover, the number
of clusters in ensemble CCE is greater than that of the single-

sample CCE. For example, if a spin Ĵi in a cluster interacts
with others through diagonal interaction only, then it gener-
ates no dynamical fluctuations and hence the single-sample
cluster correlation vanishes, while the ensemble cluster cor-
relation does not. For a bath with a relatively large number of
spins and a factorizable initial state, the ensemble CCE result
would be close to the single-sample CCE using a random
sampling of the initial bath state. The single-sample CCE is
recommended in such cases. For a relatively small bath or a
nonfactorizable ensemble, the ensemble CCE is desirable.

III. NUMERICAL CHECK

For a qubit-bath system described by a general pure
dephasing Hamiltonian as in Eq. �1�, the decoherence of the
qubit under the pulse control of the nth-order concatenated
dynamical decoupling17,19,28–30 is characterized by20

Ln 
 Tr��̂Ûn
�−�†Un

�+�� , �23�

where �̂ is the density matrix for the initial bath state and

Ûn
��� are recursively defined as

Ûj
��� 
 Ûj−1

���Ûj−1
���,

with Û0
���
e−iĤ���T. For example, free-induction decay,

Hahn echo, and Carr-Purcell echo correspond to n=0, 1, and
2, respectively.

In this section, we consider an exactly solvable spin bath
model �the one-dimensional spin-1/2 XY model� and com-
pare the qubit coherence Ln from the ensemble CCE to the
exact solutions by the Jordan-Wigner transformation.31–33

The N-spin bath Hamiltonian conditioned on the qubit state
�� � is

Ĥ��� = � �
n=1

N
zn

2
Ĵn

z + �
n=1

N−1 �Bn �
bn

2
��Ĵn+1

+ Ĵn
− + Ĵn

+Ĵn+1
− � ,

�24�

where zn denotes the qubit-bath spin interaction strength
�simulating the hyperfine interaction strength for electron-
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nuclear spin systems�, Bn is the intrinsic bath interaction
strength, and bn is the interaction dependent on the qubit
state. The bath is assumed to be in a high-temperature ther-
mal ensemble with �̂
�1 /2�N. The qubit-bath interaction co-
efficients �zn	 are taken from a sinusoidal distribution zn
=zmax sin�n� /N� �referred to as “sinusoidal” chain� or ran-
domly selected from �0,zmax� �referred to as “random”
chain�. Hereafter zmax is taken as the unit of energy. The
spin-flip interaction strengths �Bn	 and �bn	 are randomly
chosen from �10−3 ,210−3�, corresponding to typical bath
spin flip-flop time 	sf�103. The convergence of the en-

semble CCE then requires BnT, bnT�1, or equivalently T
�	sf.

First we consider the simplest case, namely, the qubit co-

herence L0=Tr��̂eiĤ�−�Te−iĤ�+�T� in free-induction decay. The
first-order truncation of the ensemble CCE gives

L0
�1� = �

i

cos� ziT

2
� , �25�

which is indeed the dephasing due to inhomogeneous broad-
ening. In the short-time limit �ziT�1�, Eq. �25� becomes
L0

�1��e−�2T2/2, where

� 
1

4�
i

zi
2 = ��ĥz�2� − �ĥz�2 � N�zi�

is the variance of the “Overhauser” field ĥz
�nznĴn
z of the

spin bath. As evidenced by the good agreement between the
1-CCE and the exact result in Fig. 1, the ensemble free-
induction decay is dominated by the inhomogeneous broad-
ening, which leads to rapid decoherence within a time scale
much shorter than the inverse qubit-bath interaction strength
zn

−1�1. The corrections due to spin-spin interactions, which
could show up on a time scale comparable to the inverse
interaction strength �1 /Bn ,1 /bn�103� and dominate the
single-sample decoherence, are negligible during the en-
semble free-induction decay process.

To highlight the role of spin-spin interaction, we consider
the qubit coherence Ln�n=1,2 ,¯� in spin echo or higher-
order concatenated control where the inhomogeneous broad-
ening is eliminated and, consequently, the first-order trunca-

FIG. 1. �Color online� Qubit coherence in free-induction decay
for a “sinusoidal” chain with N=500 spins: the exact solution
�empty squares� vs the results from ensemble CCE truncated to the
first order �1-CCE, solid line� and the second order �2-CCE, dotted
line�.

FIG. 2. �Color online� Qubit
coherence in Hahn echo �n=1�
and Carr-Purcell echo �n=2� for
different baths. The exact en-
semble coherence Ln �empty
squares� vs the magnitude �Ln

�J��
of the exact single-sample coher-
ence for three randomly chosen
bath states �J�, denoted by the
solid, dashed, and dotted lines,
respectively.
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tion of the ensemble CCE gives no decay: L1
�1�=1. When the

random-phase factor leading to the inhomogeneous broaden-
ing is eliminated �as in the echo signals�, the ensemble-
averaged qubit coherence would be close to that averaged on
a randomly sampled bath state if the bath is relatively large.
This is shown in Figs. 2�a� and 2�b� for a sinusoidal chain.
The single-sample coherences for three randomly chosen
bath states �J� agree very well with the ensemble coherence.

For a small spin bath, or for a random chain where the
qubit decoherence is caused by the dynamics of a few small
clusters, the qubit decoherence would depend sensitively on
the choice of the initial bath state and hence the ensemble
average would deviate significantly from the qubit coherence
averaged on any specific sample of the initial state. This is
clearly seen in Figs. 2�c� and 2�d� for a random chain. Even
for a relatively large sinusoidal chain, the difference between
single-sample decoherence and the ensemble average is no-
ticeable when higher-order dynamical decoupling �e.g., Carr-
Purcell echo� is applied �see Figs. 2�e� and 2�f��. This is
because that under the higher-order control, the clusters re-
sponsible for the qubit decoherence grow larger and larger as
the effects of smaller clusters are suppressed and the speci-
ficity of the initial state of larger clusters is more important
than that of smaller ones.

Figure 3 compares the results from the ensemble CCE to
the exact solutions for ensemble coherence under the control
of concatenated dynamical decoupling of different orders.
For the Hahn echo shown in Fig. 3�a�, the second-order trun-
cation of the ensemble CCE already agrees with the exact
solution very well, indicating that the decoherence is domi-
nated by spin-pair dynamics. For Carr-Purcell echo in Fig.
3�b�, however, the second-order truncation becomes insuffi-
cient as the leading order contributing from spin-pair dynam-
ics has been eliminated and the correlated dynamics of larger
clusters becomes important.17 Hence a fourth-order trunca-
tion of the ensemble CCE is required to reproduce the exact

solution. For concatenated dynamical decoupling of succes-
sively higher orders n, the leading contributions from succes-
sively larger clusters have been eliminated. As a result, suc-
cessively higher-order truncations of the ensemble CCE are
required to reproduce the exact results: 6-CCE for n=3 in
Fig. 3�c� and 8-CCE for n=4 in Fig. 3�d�.

IV. CONCLUSION

The decoherence of a qubit in a spin bath is essentially
determined by the many-body bath evolution starting either
from a pure or an ensemble state. As an extension of the
previously developed single-sample cluster-correlation
expansion24 that addresses the spin bath dynamics starting
from a noninteracting pure state, we have developed an en-
semble CCE theory to solve the spin bath dynamics starting
from an arbitrary ensemble state. In this approach, the en-
semble propagator is factorized into the product of all pos-
sible cluster correlations, each term accounting for the au-
thentic �nonfactorizable� collective excitation of a group of
bath spins. For a finite-time evolution as in the qubit deco-
herence problem, convergent results can be obtained by trun-
cating the ensemble CCE by keeping cluster correlations up
to a certain size, as has been checked using an exactly solv-
able spin chain model �the one-dimensional spin-1/2 XY
model�. For the convergence property �for a factorizable ini-
tial state�, the ensemble CCE is determined by the typical
strength of the bath spin interaction, being either diagonal or
off-diagonal, while the single-sample CCE is determined
only by the off-diagonal interaction coefficients. The en-
semble CCE can be applied to baths with nonfactorizable
initial state as well.
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FIG. 3. �Color online� En-
semble qubit coherence in
nth-order concatenated dynamical
decoupling for a sinusoidal chain
with N=500 spins: the exact en-
semble solutions �empty squares�
vs the results from the ensemble
CCE truncated to different orders.
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